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Abstract 

An important factor in the design and implementation of structural control strategies is the number and placement of 
actuators. By employing optimally-located actuators, the effectiveness of control system increases, while with an optimal 
number of actuators, an acceptable level of performance can be achieved with fewer actuators. The method proposed in this 
paper, simultaneously determines the number and location of actuators, installed in a building, in an optimal sense. In 
particular, a genetic algorithm which minimizes a suitably defined structural damage index is introduced and applied to a 
well-known nonlinear model of a 20-story benchmark building. It is shown in the paper that an equal damage protection, 
compared to the work of other researchers, can be achieved with fewer numbers of optimally placed actuators. This result can 
be important from economic point of view. However, the attempt to minimize one performance index has negative effect on the 
others. To cope with this problem to some extent, the proposed genetic methodology has been modified to be applied in a 
multi-objective optimization problem. 

Keywords: Structural control, Active control, Optimization, Methodology, Evolutionary algorithms, Benchmarks. 

1. Introduction 

The threat of earthquakes is an inevitable fact in many 
regions around the world. The loss of lives and damages to 
buildings and premises, resulting from severe seismic 
excitations has motivated many designers and researchers 
to devise protective measures for controlling the vibration 
of various kinds of structures. The significance of such 
measures seems even more crucial in high risk areas, with 
lower level of applied building technologies. For instance, 
in a recent earthquake in a southern city of Iran, Bam, 
more than 43200 people were killed and more than 30000 
were injured. On the other hand, the problem of re-
usability of buildings and structures under severe 
earthquakes, as well as the human comfort, is an 
increasingly important factor even in developed countries. 

The main purpose of structural control strategies, 
which are divided into active, passive, and semi-active 
types, is to either dissipate the energy of severe dynamic 
loadings or use externally controlled actuators to apply 
real-time counter-acting forces to the structure. 

A passive control system does not require external power 
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source, which is a merit from practical point of view, 
while the effectiveness of such systems is limited. In an 
active control system, an external power source, control 
actuator(s) that apply forces to the structure in a prescribed 
manner  [1]. Semi-active control systems are a class of 
active control systems in which the controlling actuators 
are, in fact, some controllable passive devices, e.g., 
Magneto-Rheological (MR) dampers. According to recent 
studies, the effectiveness of these control strategies is 
promising, while the amount of energy they require from 
external sources is very small  [2]. 
One of the important challenges in implementation of 
active control systems is the decision made on the number 
and placement of actuators or semi-active dampers. Lopez 
and Soong  [3] proposed the sequential search methods for 
determining the optimal placement of dampers. Although, 
these algorithms are computationally efficient, they may 
get trapped in local optima  [4]. As an alternative, global 
optimization approaches based on genetic algorithms 
(GAs) were employed to place such devices. These 
approaches have shown significant promise in their ability 
to solve problems where the objective function is not a 
continuous function of the design variables and/or the 
variable space is discrete  [4]. Abdullah et al.  [5] combined 
genetic algorithms  with a gradient-based optimization 
technique to design the optimal position of direct velocity 
feedback control controllers in buildings. Furthermore, 
Wongprasert and Symans  [6] employed GA for identifying 
the optimal damper distribution to control the nonlinear 
seismic response of a 20-story benchmark building. 

Structure 

Earthquake 
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Furthermore, Tan et al  [7] proposed methodology for 
integrating device placement and control design in civil 
structures via GA. 
Although many researches have been reported on the issue 
of optimum placement of predetermined number of 
actuators, in the literature, the problem of optimal number 
of actuators for a given level of suitably defined objective 
indices, has received less attention. In a recent study, 
Amini and Tavassoli  [8] have found the minimum number 
of optimally placed controllers ,with maximum force 
limitation,  such that the maximum displacement response 
of the structure would be restricted to a predetermined 
value. In this paper the optimum number and location of 
actuators are determined, by minimizing certain objective 
indices, related to the safety and survivability of structures. 
For the purpose of illustration, the proposed method is 
applied to a well-known nonlinear model of a 20-story 
benchmark building, proposed by Ohtori et al.  [9]. In 
particular, it is shown that with an LQG control strategy, 
an equal level of safety, as in the work of Ohtori et al.  [9] 
can be achieved while the number of actuators is reduced 

to less than 15, instead of 25. However, minimizing the 
numbers and places of actuators based on safety, will 
increase the accelerations and control forces in the 
building. This problem can be partly solved by modifying 
the approach to be used for multi-objective optimization. 
The proposed methodology is made simple enough so that 
it can be used by professional engineers, without a need 
for an excessive amount of computational effort. 

2. Structural Modeling and Controller Design 

The nonlinear evaluation of the building model 
requires a MATLAB-based program, implemented as a 
SIMULINK system function (S function), to calculate the 
nonlinear response of the model. This S function performs 
the nonlinear dynamic analysis using Newmark-β method 
 [10]. The simulator for the nonlinear evaluation model is 
illustrated in Fig. 1. To run the simulation the 
researcher/designer must include SIMULINK blocks for 
their sensor(s) and controller/control device(s)  [9]. 

 

 
Fig. 1 SIMULINK block diagram for vibration control simulator  [9] 

 
 
In this study, we assume that the controlled actuating 

devices are able to provide enough force to keep the 
structure in the linear range; therefore,  the dynamic 
equation used to describe the motion of a building can be 
written as; 

 
,gMx Cx Kx M x bu       

 (1) 

 
where, M, C, and K are mass, damping, and stiffness 

matrices of the system, respectively; x is response vector; 

u is control input vector and gx  is ground acceleration 

vector; b is participation matrix for the control input which 
is determined based on location of the controllers; and   
is a vector defining the loading of the ground acceleration 
to the structure. The state space representation of this 
equation is as; 

 

s s gx A x Bu Ex   
 (2) 

m m s m m gy C x D u F x v   
 (1) 

e e s e e gy C x D u F x   
 (2) 

 

where, A and B are system matrices; [ , ]sx x x  T  is the 

state vector; my  is the measured output vector; v is 

measurement noise vector; ey  is the regulated output 

vector. m e m e mC ,C ,D ,D ,F , and eF  are appropriately 

chosen matrices corresponding to the associated output 
vectors defined by designers. In this paper the reduced 
order linear model of a benchmark building  [9] is 
employed. 

An LQG controller is used to mitigate the vibration of 
the structure. The first design step seeks a state feedback 
law ˆu kx   that minimizes the cost function J (u) 

defined as; 
 

0

ˆ ˆ( ) ( )T TJ u x Qx u Ru dt


 
 

(5) 
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The weighting matrices Q and R are specified by the 
user, representing the relative importance of the regulation 
performance, i.e., how fast x(t) goes to zero, versus the 
required control effort. Here, K is the feedback gain matrix 
of applied to the estimated states and x̂ is the estimated 
state vector obtained by a Kalman filtering as an optimal 
estimator, in the form of where L is the observer gain 
matrix of the Kalman filter. 

 

ˆ ˆ ˆ( ),m mx A x Bu L y C x D u    
 

(6) 

 
In this paper the sample controller proposed by Ohtori 

et al.  [9] is employed. The values for R and Q are chosen 

to be (1/16) [I] and 93 10 [I] , respectively. In addition, 
measurement noises are modeled as Gaussian rectangular 
pulse processes with a pulse width of 0.01 s. Each of the 
measured responses contains a (root-mean square) noise of 
0.03 V. The A/D converters used in the digitally 
implemented controller have a span of 10  V. So the 
measurement noise is approximately 0.3% of the full span 
of the A/D converters. Also the ratio of the process noise 

covariance ( g gx xS  ) to the measurement noise covariance (

i iv vS ) is assumed as g g i ig x x v vS S    =25. 

3. Proposed Genetic Algorithm Description 

Genetic algorithm is a heuristic random search 
technique based on the survival of the fittest concept in the 
nature. To employ this optimization method, first we have 
to set up a bridge between the real world and the GA 
framework. This step is commonly called representation, 
which involves coding the problem parameters into genetic 
strings known as chromosomes or individuals. Then, a 
genetic population which is composed of different 
chromosomes is prepared. In the next step a fitness value 
is assigned to each of these chromosomes according to the 
value of the cost function which is to be minimized or 
maximized. The fitness value indicates the chromosome 
goodness in the population, the higher the fitness value of 
the chromosome, the more chance it would have to survive 
and reproduce in the next generation. Genetic algorithm 
goes on by taking one population, and generating a 
successive population with higher fitness valued 
chromosomes. This is done by employing GA operators; 
namely, selection, crossover, and mutation to combine 
features of the chromosomes with the highest fitness. 

In the method proposed here, a genetic algorithm is 
employed to determine the optimum number and 
placement of the actuators. For this purpose, an initial 
value for the required number of actuators is assumed, 
first. Next, the genetic algorithm is employed to minimize 
some suitably defined objective indices and find the 
optimal location of the selected actuators to minimize 
those indices. In order to determine the minimum number 
of required actuators for the given acceptable level of 
performance, the minimized value of the selected indices 
is compared with the maximum allowed limits. If the 
obtained values of the indices are higher (lower) than the 

allowed limit, the number of selected actuators is increased 
(decreased), and the optimization procedure is repeated, 
until the minimized objective index is almost equal to the 
specified limit. Fig. 2, illustrates a functional flowchart of 
the proposed algorithm. 

 

Fig. 2 Proposed optimization algorithm 

4. Application to Benchmark Problem 

The proposed methodology is applied to a well-known 
benchmark building  [9]. The objective here is the optimum 
number and position for the actuators. Although the 
sample control strategy proposed in  [9] is not intended to 
be competitive, it can be used to illustrate the effectiveness 
of the proposed optimization procedure, to some extent. 
The building response is sensed by a set of accelerometers 
located at the 4th, 8th, 12th, 16th, and 20th floors, as in  [9], 
and every actuator is installed within a chevron bracing 
arrangement; i.e., one end of the actuator is attached to the 
ceiling and the other end to the top of a stiff chevron brace. 

4.1. Objective indices 

Minimizing the damage to a building under seismic 
excitations is a critical issue. The evaluating indices, 
defined for the benchmark building of Ohtori et al.  [9], are 
divided into four categories: 1) building response indices 
(J1-J6), 2) building damage indices (J7-J10), 3) actuators 
action (J11-J14), and 4) the control strategy requirements 
(J15-J17). These indices are defined such that smaller values 
represent a better performance. Each of these indices, or 
any weighted combination of those, can be used as a single 
objective index for the purpose of optimization. In order to 
simplify the presentation of the proposed method, one of 
the most important damage indices, namely, the ductility 
index, J7, is selected as the objective index for the 
optimization problem. The normalized ductility index is 
defined as; 
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where,  j  is the curvature at the ends of the jth 

member (beam or column of structure); yj  is the yield 

curvature; and max  is the maximum curvature of 

uncontrolled structure. 
Therefore, the selected objective statement is something 

like "J7 should be less than a certain level". The certain 
level in the objective statement can be defined by designers, 
based on the desired level of safety of the building. The 
value of J7 achieved in Ohtori et al.  [9] was about 0.978. In 
what follows, we try to achieve the same or somewhat better 
performance with a less number of actuators. 

4.2. Problem coding and GA parameter study 

The proposed algorithm starts with an initial guess on 
the number of required actuators, say 25, and proceeds by 
employing the genetic algorithm to minimize the selected 
objective index, J7, and find the optimal location of 
actuators for the selected number of actuators. Next, the 
number of actuators is successively reduced and the effect 
on the performance degradation is evaluated. In order to 
encode the problem parameters, an integer representation is 
used. The length of a chromosome is selected to be equal to 
the number of actuators. Each gene, an integer number in 
the interval of [1 20], represents the floor number; e.g. the 
chromosome [1 4 5 20] is decoded as; 4 actuators acting on 
the 1st, 4th, 5th, and 20th floors, respectively. 

A parameter study is carried out to determine the GA 
parameters. After running the problem with various values 
of the parameters, the initial population is generated 
randomly. The size of this population is selected to be 120. 
By choosing an appropriately sized population, a good 
convergence speed can be obtained without loss of 
diversity in the GA population. The tuned parameters of 
mutation and crossover are determined based on a trade-
off between convergence speed and avoidance of trapping 
in the local optimum. That is, if the amount of mutation 
(crossover) decreases (increases) the convergence speed 
increases; however, decreasing (increasing) the mutation 
(crossover) value has the risk of losing the global optimum 
and trapping in the local optimum. 

4.3. Optimization procedure 

In order to evaluate the effectiveness of each individual 
(chromosome), representing a possible actuator 
configuration, the matrices B and K of the controlled 
structure model should be modified accordingly. In order 
to assign a goodness value, without excessive 
computational burden, among all the earthquake records 
depicted in Fig. 3, the most important part of the recorded 

Northridge earthquake signal, in which the need for 
control effort is higher, is applied to each GA 
chromosome,. For this purpose, the seismic response of the 
controlled building is simulated for 12 seconds, i.e., the 
more active duration of the earthquake. The GA algorithm 
is conducted by successive application of the standard 
genetic operations until a local minimum for J7 is 
achieved. Fig. 4 shows a typical convergence curve 
obtained by the optimization process. It must be noted that, 
while the value of J7 obtained in this step is used for 
evaluation of the fitness of the individuals, the more exact 
value of J7, calculated using the whole duration time 
response, is considered for the benchmarking structure. 

 

 
Fig. 3 Earthquake records used in the benchmark study 

 

 
Fig. 4 Typical convergence curve of the GA used in the 

optimization process 
 
For the purpose of comparison, the controlled building 

with the final actuator configuration is excited by 10 
different well-known earthquakes in their full time 
records, as in Ohtori et al.  [9]. The maximum value of J7 
among these 10 runs is considered as the damage index of 
the building. 

As a parameter study, the above procedure is repeated 
for five different numbers of actuators, i.e., 25, 20, 15, and 
10. The values of J7 associated with every case are 
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depicted in Fig. 5 and the resulting optimal configurations 
of the actuators are depicted in Fig. 6. 

For the sake of comparison the detailed results of 
objective indices for 25 non-optimal and 15 optimal 
actuators are presented in Table 1. To have a better sense, 
the value of story drift and acceleration, as well as 
maximum actuator force are calculated from the 
corresponding indices and listed in Table 2. As can be 

seen, the optimization procedure has some drawbacks on 
the efficiency of the control system such as increase on the 
required control forces and the story accelerations. To 
reduce these negative effects a designer may decide to 
perform multi-objective optimization to compromise 
between merits and demerits of optimization procedure. 
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Fig. 5 Result of optimization procedure 
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Fig. 6 Configurations for different number of optimally placed actuators 
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Table 1 Comparison of indices for optimal and non-optimal designs 
Earthquake: 

 
Intensity: 

El Centro Hachinohe Northridge Kobe Max. 
Value 

0.5 1 1.5 0.5 1 1.5 0.5 1 0.5 1 

J1 Opt. 0.760 0.762 0.762 0.889 0.891 0.908 0.894 0.928 0.847 0.695 0.928 
Non 0.747 0.748 0.748 0.883 0.887 0.907 0.859 0.942 0.816 0.728 0.942 

J2 Opt. 0.686 0.680 0.697 0.777 0.776 0.828 0.847 0.868 0.728 0.939 0.939 
Non 0.648 0.646 0.664 0.746 0.743 0.833 0.807 0.904 0.702 0.839 0.904 

J3 Opt. 0.805 0.806 0.928 1.009 1.011 1.037 0.912 0.995 0.974 1.055 1.055 
Non 0.780 0.782 0.909 0.977 0.982 1.009 0.885 0.969 0.925 1.066 1.066 

J4 Opt. 0.731 0.731 0.738 0.892 0.892 0.915 0.891 0.911 0.709 0.378 0.915 
Non 0.662 0.663 0.670 0.885 0.884 0.903 0.724 0.929 0.648 0.23 0.929 

J5 Opt. 0.627 0.626 0.645 0.704 0.700 0.707 0.692 0.712 0.679 0.793 0.793 
Non 0.563 0.560 0.578 0.658 0.652 0.661 0.592 0.637 0.579 0.713 0.713 

J6 Opt. 0.798 0.798 0.805 0.881 0.881 0.891 0.886 0.912 0.799 0.947 0.974 
Non 0.724 0.723 9.729 0.849 0.848 0.858 0.776 0.841 0.789 0.840 0.858 

J7 Opt. 0.795 0.795 0.754 0.963 0.965 0.937 0.879 0.966 0.833 0.759 0.966 
Non 0.772 0.773 0.722 0.955 0.959 0.943 0.728 0.978 0.688 0.688 0.978 

J8 Opt. - - 0.158 - - 0.624 0.373 0.592 0.438 0.466 0.642 
Non - - 0.078 - - 0.714 0.220 0.548 0.144 0.323 0.714 

J9 Opt. - - 0.535 - - 0.837 0.708 0.896 0.385 0.905 0.905 
Non - - 0.372 - - 0.791 0.542 0.906 0.308 0.810 0.906 

J10 Opt. 0.809 0.809 0.726 0.889 0.890 0.914 0.869 0.911 0.784 0.429 0.914 
Non 0.733 0.733 0.656 0.847 0.847 0.890 0.632 0.944 0.777 0.227 0.944 

J11 
 10-3 

Opt. 3.24 6.43 9.20 1.70 3.34 4.56 7.13 8.41 8.15 9.20 9.20 
Non 1.68 3.35 5.01 1.92 3.55 5.06 6.71 8.18 4.97 8.91 8.91 

J12 Opt. 0.079 0.080 0.080 0.078 0.078 0.083 0.089 0.102 0.143 0.111 0.143 
Non 0.072 0.072 0.072 0.075 0.076 0.080 0.0781 0.103 0.126 0.114 0.126 

J13 
 10-3 

Opt. 1.67 3.27 5.07 0.52 0.97 1.41 2.52 2.97 3.29 6.12 6.12 
Non 1.26 2.47 3.88 0.83 1.69 2.60 4.03 5.12 4.03 8.81 8.81 

J14 
 10-3 

Opt. 0.038 0.074 0.116 0.024 0.045 0.069 0.053 0.079 0.059 0.103 0.116 
Non 0.055 0.103 0.161 0.041 0.073 0.113 0.079 0.122 0.077 0.145 0.161 

J15 Opt 15 
Non 25 

J16 5 
J17 20 

 
 

5. Multi-Objective Optimization 

In order to compromise between different conflicting 
indices, the proposed genetic methodology can be 
modified to be applied as a multi-objective optimization 
problem. According to  
Table 2, the optimally placed actuators have to work under 
saturation condition. To reduce the load on the actuators, 
the control force index, J11, can be considered in the 
optimization procedure as well. For this purpose, the 
compound objective index can be defined as; 
 
 

1 2

 
 

0 0
7 7 11 11

mo 0 0
7 11

J J J J
J w w

J J
 

(8) 

 
 
 
 

 

Table 2 Building responses for uncontrolled and different 
controlled designs 

 
 

Driftmax 

(mm) 
Accelerationmax 

(m/s2) 
Forcemax 

(kN) 
Uncontrolled 

structure 
74.4 8.51 - 

Ohtori et al.  [9] 70.1 7.69 970.2 
Optimal design 

with 25 
actuators 

68.6 7.47 
1000 

(saturation 
value) 

Optimal design 
with 15 

actuators 
69.1 9.36 

1000 
(saturation 

value) 
 

where, 0
iJ  is the minimum of iJ  index, regardless of 

other objective(s); and jw  is the weighting scalar defining 

the relative importance of  every  index. The control force 
index, J11, is defined as 
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(9) 

 
where, (t)lf  is the force generated by the l-th control 

device over the time history of every applied  earthquake 
excitations, and W is the weight of the building which is 
1.11×108 N for 20-story benchmark building. 
The bar charts shown in Fig. 7 and Fig. 8 show the result 
of optimization for 25 actuators, based on J7, J11, and Jmo 

objective indices. When the optimization process is carried 
out based on J7, the value of J11 becomes even worse than 
the non-optimal case and vice versa. However, a trade off 
between these two conflicting objective indices can be 
made by defining the compound objective index, Jmo. 
 

 
Fig. 7 J7 index value in the optimization process with different 

objectives 
 

 
Fig. 8 J11 index value in the optimization process with different 

objectives 

6. Discussion 

Although the results of the sample controller, proposed 
by Ohtori et al.  [9], was not intended to be competitive, 
what justifies the comparison of our method with their 
sample controller is to make the advantage of the proposed 

method for a given control algorithm more clear. 
As depicted in Fig. 5, using the optimum configuration 

for actuators, the value of J7 is reduced from 0.978, in 
Ohtori et al.  [9], to 0.953, i.e., a 2.5 percent reduction, 
which is a significant improvement for the large structure 
of the Benchmark Building. Another observation from this 
figure is that the amount of J7 achieved by Ohtori et al.  [9] 
can be matched by our proposed method, by using less 
than 15 actuators instead of 25. Since the optimization 
procedure is performed using the single objective index, 
J7, the effect on other indices must be studied as well. For 
this reason, the value of all the indices with only 15 
optimally placed actuators are compared with the 25 non-
optimally placed actuators, in Table 1. It can be seen that, 
despite a 60 percent decrease in the number of required 
actuators, the values of indices related to drift, i.e., J1 to J4, 
and the indices related to the structural damage, i.e., J7 to 
J10 are also improved. The optimization based on J7, 
however, has undesired effect on indices related to the 
acceleration, J2, J3, J5, J6, as well as, the actuator control 
force, J11, and the control device stroke, J12. Indeed, higher 
values for the actuator related indices is quite expected, 
because reducing the number of actuators, naturally leads 
to more required action from each of the remaining ones. 

7. Conclusion 

The proposed methodology is intended to offer a 
systematic way for finding an optimum number and 
location of actuators acting on the structure. For this 
purpose, the optimum location of predetermined number 
of actuators is found by genetic algorithm, and the 
optimum number of actuators is determined by repetitive 
application of the algorithm with different number of 
actuators. For the purpose of illustration, the methodology 
was applied to a well-known benchmark 20-story building. 
It is observed that the results for the optimum number and 
placement of actuators depend on the selected objective 
indices, which can be either a single criterion or some 
compound criteria defined based on the designers 
objective(s). In particular, the study of this research shows 
that the number of optimally placed actuators, for a certain 
value of damage, is significantly less than the required 
actuators in a non-optimal design However; performing 
optimization based on damage index, change the required 
control forces and the stroke of the controlling actuators in 
a negative way. To compromise between damage and 
control force, it is possible to put more constraints on the 
control force, by introducing a suitably defined compound 
criterion for the optimization procedure. 

Moreover, an LQG controller was used to suppress the 
vibration of the structure. This control algorithm can also 
be employed as a nominal controller in the design 
procedure of semi-active controllers, using methods such 
as clipped-optimal controller  [11]. Therefore, the 
optimization approach presented in this paper can be 
applied to active, as well as, semi-active control devices. 
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